

Evaluating Transformer's Ability to Learn Mildly Context-Sensitive Languages Shunjie Wang, Shane Steinert-Threlkeld

Natural Language is Supra-Context-Free

Swiss German subordinate clauses cross-serial dependency (Shieber, 1985)

Jan säit das mer d'chind em Hans es huus haend wele laa hälfe aastriiche says that we the children-ACC Hans-DAT the house-ACC have wanted let help paint Jan

'Jan says that we have wanted to let the children help Hans paint the house.'

Mild Context-Sensitivity

- TAG, CCG, etc. extend CFG with just enough power to describe cross-serial dependency as in Swiss German.
- MG, MCFG, etc. have power beyond TAG as motivated by more complex phenomena.
- Formalization of *mildly context-sensitive*

BINARY CLASSIFICATION POS: $\{ww \mid w \in \{a, b\}^*\}$ NEG: random strings from $\{a, b\}^*$

Accuracy	(%)	IN-DISTR.	OOD	OOD
		$ w \in [1, 11]$	w = 12	w = 13
\mathcal{R}	Transf.	99.5 _{±0.3}	$50.4_{\pm0.3}$	$50.2_{\pm0.1}$
ww^{-1}	LSTM	$97.8_{\pm 0.5}$	96.0 _{±0.7}	96.0 _{±0.8}

Crossing		a^n	$\mathbf{b}^m \mathbf{c}^n \mathbf{d}^n$		
$\begin{array}{l} \textbf{NEXT CHARACTER PREDICTION}\\ \texttt{a}^n\texttt{b}^m\texttt{c}^n\texttt{d}^m \rightarrow (\texttt{a/b})^n(\texttt{b/c})^m\texttt{c}^{n-1}\texttt{d}^m \texttt{[EOS]} \end{array}$					
$\overline{\Lambda_{00}}$					
	$\frac{\text{IN-DISTR.}}{n, m \in}$	$n \text{ or } m \in$	$n \text{ or } m \in$		
	[1, 50]	[51, 100]	[101, 150]		

Tr. +PE	$99.8_{\pm 0.2}$	$6.5_{\pm 1.3}$	$0.0_{\pm 0.0}$	
	100 0		JJ	

languages (Kallmayer 2010):

- Describe cross-serial dependencies
- Can be parsed in polynomial time
- String length grows linearly
- Contain all CFLs
- MCSLs as benchmarks for linguistic adequacy:
 - Represent a hypothesized upper bound of the complexity of natural language
 - Abstractions of complex phenomena such as reduplication, free word order, etc.

We test how well Transformers learn complex MCSLs. They generalize well

WW

to unseen in-distribution data, but their extrapolation is worse than LSTMs. The learned self-attention resembles dependency relations and the representations encoded count information.

Language	S		
	Μ	lildly Context-Sens	itive
CFL C	L(TAG)	$\subset L(MG) =$	<i>L</i> (MCFG)
LESS COMPLEX	CANONICAL	More Complex	SCRAMBLE
$ww^{\mathcal{R}}$	ww	www	
$a^n b^m c^m d^n$	$\mathtt{a}^n \mathtt{b}^m \mathtt{c}^n \mathtt{d}^m$		$\begin{split} O_2 &= \{ w \in \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \}^* \mid \\ \left w \right _{\mathtt{a}} &= \left w \right _{\mathtt{c}} \wedge \left w \right _{\mathtt{b}} = \left w \right _{\mathtt{d}} \} \end{split}$
$a^n b^n$	$\mathtt{a}^n \mathtt{b}^n \mathtt{c}^n \\ \mathtt{a}^n \mathtt{b}^n \mathtt{c}^n \mathtt{d}^n$	$\mathtt{a}^n \mathtt{b}^n \mathtt{c}^n \mathtt{d}^n \mathtt{e}^n$	$\begin{split} \text{MIX} &= \{ w \in \{\texttt{a},\texttt{b},\texttt{c}\}^* \mid \\ & w _\texttt{a} = w _\texttt{b} = w _\texttt{c} \} \end{split}$
Tasks			
BINARY CLASSIFICATION (BIDIRECTIONAL ATTENTION)		NEXT CHARACT (UNIDIRECTION	ER PREDICTION
Binary	0/1	<i>k</i> -hot [1 1 0]	[1 1 0] [0 1 0] [0 0 1]

Multiple Agreements	a"b
---------------------	-----

NEXT CHARACTER PREDICTION

Accuracy (%)		IN-DISTR.	OOD	OOD
		$n \in$	$n \in$	$n \in$
		[1, 50]	[51, 100]	[101, 150]
$a^n b^n$	Tr. −PE	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$	$91.3_{\pm 8.4}$
av	LSTM	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$
n , n	Tr. −PE	100.0 _{±0.0}	100.0 _{±0.0}	36.0 _{±14.2}
арс	LSTM	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$
$a^n b^n c^n d^n$	Tr. −PE	100.0 _{±0.0}	100.0 _{±0.0}	$\textbf{24.0}_{\pm 10.2}$
	LSTM	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$	$\textbf{48.7}_{\pm 13.6}$
$a^n b^n c^n d^n e^n$	Tr. −PE	100.0 _{±0.0}	$85.3_{\pm 15.4}$	3.3 _{±4.7}
	LSTM	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$
$a^{n}b^{n}$: 2L×4H model $a^{n}b^{n}c^{n}$: 2L×4H model				

Scrambling

 c^n

b

С

С-

C -

BINARY CLASSIFICATION POS: all permutations of $a^n b^n c^n / a^n b^m c^n d^m$ NEG: remaining strings from $\{a, b, c\}^* / \{a, b, c, d\}^*$

Macro I	F-1(%)	IN-DISTR.	OOD	OOD
		$ w _{\sigma} \in [1,4]$	$ w _{\sigma} = 5$	$ w _{\sigma} = 6$
NAIN	Transformer	100.0 _{±0.0}	65.6 _{±2.9}	45.7 _{±6.3}
MIX	LSTM	$\textbf{100.0}_{\pm 0.0}$	$\textbf{70.3}_{\pm 10.5}$	$\textbf{49.0}_{\pm 15.5}$
		$ w _{\sigma} \in [1,3]$	$ w _{\sigma} \in [1,4]$	$ w _{\sigma} \in [1,5]$
0	Transformer	100.0 _{±0.0}	$60.5_{\pm 8.5}$	45.1 _{±10.1}
02	LSTM	$\textbf{100.0}_{\pm 0.0}$	$\textbf{100.0}_{\pm 0.0}$	98.6 _{±0.4}
М	IX: 2L×1H model Head 1-1	0	2: 2L×4H model Head 1-3	0.000
a -		a -		- 0.200

- 0.150

$b - 4.0$ 11.1 17.2 $b - \pm 0$	3 1.1 .6 ±0.1	17.6 ±0.1	0.1 ±0.1	
b - ± 0.2 ± 0.2 ± 1.0 c - b - c - 6.0 c - ± 0.0) 15.7 .5 ±0.7	5.0 ±0.7	14.0 ±0.7	- 0.100
$\begin{array}{c} c \\ c \\ c \\ - \\ \pm 0.2 \\ c \\ - \\ \end{array} \begin{array}{c} 13.5 \\ \pm 0.5 \\ \pm 0.7 \\ \end{array} \begin{array}{c} 8.3 \\ \pm 0.7 \\ d \\ - \\ \end{array} \begin{array}{c} c \\ - \\ d \\ - \\ \pm 0. \end{array}$	7 0.1 .4 ±0.1	17.8 ±0.6	0.1 ±0.1	- 0.050
⊣- <mark>-</mark>	a b b	 c c c	d d ⊣	0.000
Using an MLP regressor prober,		Cou	nting Ta	arget
we can extract the ongoing		#a	#b	#c
tallies for the 3 symbols in MIX strings. The predictions and	a	[1	0	0]
targets have an MSE of 0.21	b	[1	1	0]
and a Pearson correlation of	С	[1	1	1]
control task target (shuffled	а	[2	1	1]
original target) which has an	b	[2	2	1]
MSE 01 1.33.	С	[2	2	2]