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ScramblingMultiple Agreements

Natural Language is Supra-Context-Free

Swiss German subordinate clauses cross-serial dependency (Shieber, 1985)
Jan säit das mer d’chind em Hans es huus haend wele laa hälfe aastriiche

Jan says that we the children-ACC Hans-DAT the house-ACC have wanted let help paint

‘Jan says that we have wanted to let the children help Hans paint the house.’

Mild Context-Sensitivity

• TAG, CCG, etc. extend CFG with just enough 
power to describe cross-serial dependency as 
in Swiss German.

• MG, MCFG, etc. have power beyond TAG as 
motivated by more complex phenomena.

• Formalization of mildly context-sensitive 
languages (Kallmayer 2010):

▪ Describe cross-serial dependencies
▪ Can be parsed in polynomial time
▪ String length grows linearly
▪ Contain all CFLs

• MCSLs as benchmarks for linguistic adequacy:
▪ Represent a hypothesized upper bound of 

the complexity of natural language
▪ Abstractions of complex phenomena such 

as reduplication, free word order, etc.

Regular

Context–Free

L(TAG) = L(CCG)

Mildly Context–Sensitive

Context–Sensitive

L(MG) = L(LCFRS) = L(MCFG)

Recursively Enumerable

Tasks

Languages

CFL
Mildly Context-Sensitive

L(TAG) L(MG) = L(MCFG)

LESS COMPLEX CANONICAL MORE COMPLEX SCRAMBLE
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Macro F-1(%) IN-DISTR. OOD OOD
|w|σ ∈ [1,4] |w|σ = 5 |w|σ = 6

MIX
Transformer 100.0±0.0 65.6±2.9 45.7±6.3

LSTM 100.0±0.0 70.3±10.5 49.0±15.5

|w|σ ∈ [1,3] |w|σ ∈ [1,4] |w|σ ∈ [1,5]

O2

Transformer 100.0±0.0 60.5±8.5 45.1±10.1

LSTM 100.0±0.0 100.0±0.0 98.6±0.4

                         

                                            

                         

                  

                         

                  

Accuracy (%) IN-DISTR. OOD OOD
n, m ∈
[1, 50]

n or m ∈
[51, 100]

n or m ∈
[101, 150]

Tr. +PE 99.8±0.2 6.5±1.3 0.0±0.0

Tr. −PE 100.0±0.0 98.0±0.3 23.0±3.1

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

Tr. +PE 100.0±0.0 7.2±1.6 0.0±0.0

Tr. −PE 100.0±0.0 92.3±1.2 27.0±14.0

LSTM 100.0±0.0 99.2±1.3 81.3±12.3

Accuracy (%) IN-DISTR. OOD OOD
|w| ∈ [1,11] |w| = 12 |w| = 13

Transf. 99.5±0.3 50.4±0.3 50.2±0.1

LSTM 97.8±0.5 96.0±0.7 96.0±0.8

Transf. 99.5±0.1 51.3±0.3 50.2±0.0

LSTM 97.2±0.4 95.7±1.1 90.4±1.4

Transf. 99.5±0.2 51.0±0.5 50.5±0.2

LSTM 99.4±0.1 98.6±0.5 87.5±6.2

a a b b

Embedding

Sinusoidal PE

Transformer 
Encoder

a a b b

a a b b

Source

Linear

Sigmoid

Binary 
Label

Average
Pooling

0/1

a a b b

Embedding

Sinusoidal PE
(optional)

Transformer with 
Causal Mask

(offers indirect 
positional info)

a a b b

a a b b

Source

Linear

Sigmoid

k-hot
vectors

[1 1 0] [1 1 0] [0 1 0] [0 0 1]

                         

              

                         

             

                         

                         

                         

                                             
                         

                                             

                         

                                                            

                                            

                         

                                            

                         

                                             

                         

   
 
               

 
                          

                         

                                                
                         

   
 
               

 
                         

                         

 
 
                                             

BINARY CLASSIFICATION
(BIDIRECTIONAL ATTENTION)

NEXT CHARACTER PREDICTION
(UNIDIRECTIONAL ATTENTION)

BINARY CLASSIFICATION
POS: 
NEG: random strings from

                         

                         

: 2L×4H model
Head 2-2

: 2L×1H model
Head 2-1

                         

             

                         

              

: 2L×4H model

                         

             

Accuracy (%) IN-DISTR. OOD OOD
n ∈

[1, 50]

n ∈
[51, 100]

n ∈
[101, 150]

Tr. −PE 100.0±0.0 100.0±0.0 91.3±8.4

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

Tr. −PE 100.0±0.0 100.0±0.0 36.0±14.2

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

Tr. −PE 100.0±0.0 100.0±0.0 24.0±10.2

LSTM 100.0±0.0 100.0±0.0 48.7±13.6

Tr. −PE 100.0±0.0 85.3±15.4 3.3±4.7

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

NEXT CHARACTER PREDICTION

                         

                                            

                         

                                             

NEXT CHARACTER PREDICTION

                         

                                             

to unseen in-distribution data, but their extrapolation is worse
than LSTMs. The learned self-attention resembles dependency 
relations and the representations encoded count information.

We test how well
Transformers learn 
complex MCSLs. 
They generalize well 

                         

                                   

                         

                                                                      

                                                                      

                                             

: 2L×4H model
Head 1-4

: 1L×4H model
Head 1-2

: 1L×4H model
Head 1-1

: 2L×4H model
Head 1-4

                         

                                   

                         

                                             

                         

                                             

                         

                                             

O2: 2L×4H model
Head 1-3

BINARY CLASSIFICATION
POS: all permutations of
NEG: remaining strings from

Using an MLP regressor prober, 
we can extract the ongoing 
tallies for the 3 symbols in MIX 
strings. The predictions and 
targets have an MSE of 0.21 
and a Pearson correlation of 
0.929. This contrasts with a 
control task target (shuffled 
original target) which has an 
MSE of 1.33.
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Counting Target

#a #b #c

a [1 0 0]

b [1 1 0]

c [1 1 1]

a [2 1 1]

b [2 2 1]

c [2 2 2]
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